SLSS CANAnalyser

  • Entwicklungsstand: in Entwicklung / development still in progress (letzte Aktualisierung: 30.03.2021 – SLSS CANData Viewer)
  • Veröffentlichungen: Version 1.0.0.0 hier und auf GitHub zum Download (Testphase) veröffentlicht
  • GitHub Repository: https://github.com/SeppHansen/SLSS-CANAnalyser*

 

Vorgeschichte

Da ich in der Vergangenheit sowohl beruflich, als auch in meiner Freizeit immer wieder mit CAN-Bus Systemen und den darüber versendeten Botschaften in Kontakt gekommen bin, entstand irgendwann der Wunsch / Bedarf nach einer Software, mit dessen Hilfe ich mir das Handling und den Umgang mit den Bus-Daten erleichtern kann. Bis dato habe ich CAN-Botschaften entweder im Terminal, später mit einem Pythonprogramm auf einer  Raspberry Pi*, wie ich sie zum Beispiel als zentrales Gateway bei meinem SLSS CarNet* Projekt verwende, oder mittels der seriellen Ausgabe eines  Arduino* Micro-Controller Boards, angezeigt und mitgeloggt. Die Auswertung der Daten erfolgte dann immer im Nachgang anhand der gemachten Aufzeichnung, oder durch das physische Überprüfen der Reaktionen, welche durch das Senden von bestimmten Botschaften ausgelöst werden sollten. Dies ist auf Dauer natürlich nur wenig komfortabel.

Für die professionelle Bearbeitung von CAN-Bus Daten gibt es natürlich auch professionelle Tools, welche alle gewünschten Funktionen unterstützen und mit verschiedenen, teilweise sogar hardwareseitig implementierten Methoden, sicherstellen, dass jedes Datenpaket welches über den CAN-Bus übertragen wird auch erkannt und mitgeloggt wird. Diese Tools kommen meist in den Entwicklungsabteilungen für Kraftfahrzeuge, Nutzfahrzeuge, Schiffe und auch anderen Maschinen zur grundlegenden Auslegung und Entwicklung des CAN-Bus zum Einsatz und werden ständig weiterentwickelt, geupdatet und verbessert. Da dieser Vorgang für die entwickelnden Firmen recht zeit- und kostenintensiv ist, werden diese Programme leider meist als zeitlich begrenzte Lizenzversionen verkauft und benötigen nicht selten herstellerspezifische Hardware, welche ebenfalls nicht ganz billig ist. Diese tollen und sehr nützlichen Tools sind damit leider für den Hobbybereich oder den sporadischen Einsatz einfach zu teuer.

Mehr lesen

Gehäuse für PS2 to Serial Converter

Beschreibung

Mit dem PS2TOSERIAL Converter ist es, wie der Name schon sagt, möglich eine PS2-Maus an den seriellen Anschluss (COM-Port), wie er bei älteren Computern vorhanden und damals der gängige Standard war, anzuschließen. Da das Converter-Board ohne Gehäuse geliefert wird, haben wir uns die Mühe gemacht und ein kleines Gehäuse dafür erstellt, welches wir hier gern allen Interessierten zur Verfügung stellen möchten. Viel Spaß beim Drucken wünschen euch Sebastian Langer und Martin Nemitz!

Mehr lesen

DIY – Frequenzgenerator (PWM)

Vorgeschichte

Meine Leidenschaft für die „Bastelei“ mit Micro-Controllern hat mittlerweile auch in meiner beruflichen Tätigkeit als Prüfstandstechniker Einzug gehalten. So ist innerhalb der letzten Jahre das eine oder andere „Helferlein“ für die Erleichterung unserer täglichen Arbeit und das Meistern von speziellen Mess- und Prüfaufgaben entstanden. Der Anstoß für die Entwicklung eines neuen Gerätes war dabei meist der einfache Fakt, dass für die Umsetzung der benötigten Messungen keine Hardware verfügbar, oder die verfügbare Hardware für die Aufgabe nicht genau passend war. Da dieser Umstand beim Testen von Einzelkomponenten oder Teilgruppen relativ häufig vorkommt, fand ich immer wieder neue Herausforderungen und konnte somit auch Dinge realisieren, welche ich so in dieser Art vorher noch nicht umgesetzt hatte. So war zum Beispiel meine erste CAN-Bus Anwendung eines dieser Bastelprojekte.

Ein weiterer großer Vorteil dieser „Eigenanfertigungen“ ist, dass ich die zum Betrieb benötigten Ein- und Ausgaben direkt an die von unseren Prüfständen zur Verfügung gestellten Eingangs- und Ausgangsschnittstellen anpassen kann. So wurde bei den meisten meiner „schwarzen Kästchen“ die Steuerung per analogem Eingangssignal im Bereich von 0V – 10V realisiert, während die Rückgabe der Einstell- und Messwerte meist per CAN-Bus erfolgte. Dies ist dem Umstand geschuldet, dass der Treiber des verwendeten Messsystems nur auf dem CAN-Eingang des Prüfstandes lesen, aber nicht senden kann.

 

Anforderung universell einsetzbarer Frequenzgenerator

In der Vergangenheit gab es immer wieder die Anforderung Magnetventile, Motoren oder andere elektrische Komponenten mit einer vorzugebenden Frequenz – Tastverhältniseinstellung, also per Pulsweitenmodulation* / PWM* (https://www.elektronik-kompendium.de/sites/kom/0401111.htm), betreiben zu können.

Da die Digitalausgänge unser Prüfstandshardware keine hohen Schaltströme zulassen, wurde für die Ansteuerung von elektrischen Bauteilen meist eine Kombination aus vorgeschaltetem Reed-Relais und nachgeschalteten Kfz-Last-Relais verwendet. Leider ließen sich mit dieser Kombination keine hohen Schaltfrequenzen realisieren (max. ca. 30Hz bis 50Hz), was dazu führte, dass für Schaltanforderungen mit höheren Frequenzen meist Fahrzeugsteuergeräte und Kabelbäume aufgebaut, und die Ansteuerung kompliziert über deren Software realisiert werden musste.

Meine erste Idee war, den Relaisverbund durch ein Metall-Oxid-Halbleiter-Feldeffekttransistor* (kurz: MOSFET) zu ersetzen, womit sich die Schaltfrequenz um ein vielfaches erhöhen lässt und einer direkten Ansteuerung nichts mehr im Weg steht. Da ich bereits für andere Schaltaufgaben MOSFETs verwendet hatte, passte ich eine dieser Schaltungen an die neuen Anforderungen an. Als wir diese Schaltung am Prüfstand testeten, stellten wir jedoch fest, dass mit den digitalen Ausgängen der Messkarten keine stabilen Frequenzsignale erzeugt werden konnten. Hierbei liegt das Problem jedoch weniger an der Hardware selbst, sondern eher an dem in der Prüfsoftware eingestellten Software-Takt, welcher bei höherer CPU-Auslastung ab und an ins Stocken geriet. Dies war bei der Ansteuerung eines Magnetventils hörbar und auch in den aufgezeichneten Messdaten sichtbar.

Da man hiermit keine vernünftigen Messergebnisse erzeugen konnte, kam ich auf die Idee, die Ansteuerung von Frequenz und Tastverhältnis über einen Micro-Controller zu realisieren. Dieser sollte auf Grund seiner internen Timer und der hardwarenahen Programmierung problemlos ein stabiles PWM-Signal erzeugen können.

Mehr lesen